|\/| _ _|_|_ | |(_| | | | .

Most of my research thus far has been focused on 3D contact topology. In particular I have been working explicitly with characteristic foliations of convex surfaces embedded in 3-dimensional contact manifolds. If I am allowed to be a bit more broad in what I find interesting, I would say I enjoy contact and symplectic topology in general, as well as low-dimensional topology and (at least some ideas of) knot theory.

Disorganized mathematics:

Things I wrote:

- (Co)tangent Things (updated: 2018-05-08)

We explore the tangent and cotangent bundle associated to manifolds. It culminates with de Rham cohomology and some integration on manifolds. - A little about Gram-Schmidt (updated: 2019-09-09)

A little about the Gram-Schmidt alogrithm and a version for symplectic bilinear forms. - Camels and symplectic rigidity in vector spaces (updated: 2019-09-11)

It's about camels...and I guess symplectic vector spaces. We prove the affine version of the non-squeezing theorem. - Characteristic classes (updated: 2019-12-31)

Characteristic classes. Roughly based on the contents of Tu's book introducing the topic. I tried my best to make it accessible to those who have read my cotangent things pdf. It's not quite finished yet. - Gel'fand and his algebras (updated: 2020-08-07)

I compiled this overview of the history and theory of Gel'fand's theory for my functional analysis class the past spring. Maybe you might want to read it. - The Gromov-Lawson obstruction and the Geroch conjecture (updated: 2021-09-28)

I compiled this two-source overview on the application of index theory and spin geometry to prove the so-called Geroch conjecture: that $T^n$ does not admit a metric with positive scalar curvature. Details are sparse.